If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9k^2+12k-23=0
a = 9; b = 12; c = -23;
Δ = b2-4ac
Δ = 122-4·9·(-23)
Δ = 972
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{972}=\sqrt{324*3}=\sqrt{324}*\sqrt{3}=18\sqrt{3}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-18\sqrt{3}}{2*9}=\frac{-12-18\sqrt{3}}{18} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+18\sqrt{3}}{2*9}=\frac{-12+18\sqrt{3}}{18} $
| 9k^2+12k−23=0 | | 5-2p=6 | | 30x=42x | | -0.04x-35=0 | | 5/3=5k | | 12/3=5k | | 16^{6x}=16^{x+3} | | -9-7(3p-5)=93-4 | | 3x^2+1=25 | | -7+u/3=-28 | | 1/2h(10+7)=153 | | (x-3)(x-6)=28 | | -20=3+9(k+6) | | 28=9(5y+3) | | 15+(3x-6)=(9+x)*2 | | 50=1.05^x | | 5x-6=-2x+6 | | 3x+5x=3x+4x | | 10×4x=90 | | -5-z=z+10 | | 24-7x=3,x | | 3+y-2=4-2y | | x^2=0.99 | | 2x-50+.5x+15=90 | | 6(3n+3)=9(4n+4)+4 | | 7/x=15/60 | | 255x^2-82.6x+6.484905=0 | | 4x-5-15=90 | | 6x+5=6(x+8) | | 7z+2/5=8z+1/5 | | 2z15/z=11 | | (x+1)2=15 |